Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 127: 104059, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171289

RESUMO

OBJECTIVE: Despite a long history of ECG-based monitoring of acute ischemia quantified by several widely used clinical markers, the diagnostic performance of these metrics is not yet satisfactory, motivating a data-driven approach to leverage underutilized information in the electrograms. This study introduces a novel metric for acute ischemia, created using a machine learning technique known as Laplacian eigenmaps (LE), and compares the diagnostic and temporal performance of the LE metric against traditional metrics. METHODS: The LE technique uses dimensionality reduction of simultaneously recorded time signals to map them into an abstract space in a manner that highlights the underlying signal behavior. To evaluate the performance of an electrogram-based LE metric compared to current standard approaches, we induced episodes of transient, acute ischemia in large animals and captured the electrocardiographic response using up to 600 electrodes within the intramural and epicardial domains. RESULTS: The LE metric generally detected ischemia earlier than all other approaches and with greater accuracy. Unlike other metrics derived from specific features of parts of the signals, the LE approach uses the entire signal and provides a data-driven strategy to identify features that reflect ischemia. CONCLUSION: The superior performance of the LE metric suggests there are underutilized features of electrograms that can be leveraged to detect the presence of acute myocardial ischemia earlier and more robustly than current methods. SIGNIFICANCE: The earlier detection capabilities of the LE metric on the epicardial surface provide compelling motivation to apply the same approach to ECGs recorded from the body surface.


Assuntos
Eletrocardiografia , Isquemia Miocárdica , Animais , Isquemia , Aprendizado de Máquina , Isquemia Miocárdica/diagnóstico
2.
Artigo em Inglês | MEDLINE | ID: mdl-31338376

RESUMO

To overcome the ill-posed nature of the inverse problem of electrocardiography (ECG) and stabilize the solutions, regularization is used. Despite several studies on noise, effect of prefiltering of ECG signals on the regularized inverse solutions has not been explored. We used Bayesian estimation for solving the inverse ECG problem with and without applying various prefiltering methods, and evaluated our results using experimental data that came from a Langendorff-perfused pig heart suspended in a human-shaped torso-tank. Epicardial electrograms were recorded during RV pacing using a 108-electrode array, simultaneously with ECGs from 128 electrodes embedded in the tank surface. Leave-one-beat-out protocol was used to obtain the prior probability density function (pdf) of electro-grams and noise statistics. Noise pdf was assumed to be zero mean-Gaussian, with covariance assumptions: a) independent and identically distributed (noi-iid), b) correlated (noi-corr). Reconstructed electrograms and activation times were compared to those directly recorded by the sock for 3 beats selected from the recording. Noi-corr is superior to noi-iid when the training set is a good match to data, but for applications requiring activation time derivation, careful selection of preprocessing methods, in particular to adequately remove high-frequency noise, and an appropriate noise model is needed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30899762

RESUMO

The inverse problem of electrocardiography is ill-posed. Errors in the model such as signal noise can impact the accuracy of reconstructed cardiac electrical activity. It is currently not known how sensitive the inverse problem is to signal processing techniques. To evaluate this, experimental data from a Langendorff-perfused pig heart (n=1) suspended in a human-shaped torso-tank was used. Different signal processing methods were applied to torso potentials recorded from 128 electrodes embedded in the tank surface. Processing methods were divided into three categories i) high-frequency noise removal ii) baseline drift removal and iii) signal averaging, culminating in n=72 different signal sets. For each signal set, the inverse problem was solved and reconstructed signals were compared to those directly recorded by the sock around the heart. ECG signal processing methods had a dramatic effect on reconstruction accuracy. In particular, removal of baseline drift significantly impacts the magnitude of reconstructed electrograms, while the presence of high-frequency noise impacts the activation time derived from these signals (p<0.05).

4.
Proc IEEE Int Symp Biomed Imaging ; 2015: 1053-1056, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26401225

RESUMO

Inverse methods for localization and characterization of cardiac and brain sources from ECG and EEG signals are notoriously ill-conditioned and thus sensitive to SNR in the measurements. Multiple recordings of the same underlying phenomenon are often available, but are contaminated by unmodeled correlated noise such as heart motion from respiration or superposition of atrial activation or on-going EEG in the case of inter-ictal spikes or evoked response in EEG. We address here the open question of how best to incorporate these multiple recordings, comparing standard ensemble averaging, a multichannel non-linear spline-based average designed to be less sensitive to timing variations from motion or modulation, and a probalistic inverse incorporating a data-driven model of the noise correlation and using all recordings jointly. Results are tested on localizations of clincally recorded 120 lead ECGs during ventricular pacing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...